Aplicação de Paenibacillus polymyxa na produção fermentativa de isômero opticamente ativo de 2,3-butanodiol

Giovana Farenzena Adami* (BIC-UCS), Juliana Mazzarollo, Analia Borges Folle, Eloane Malvessi, Mauricio Moura da Silveira

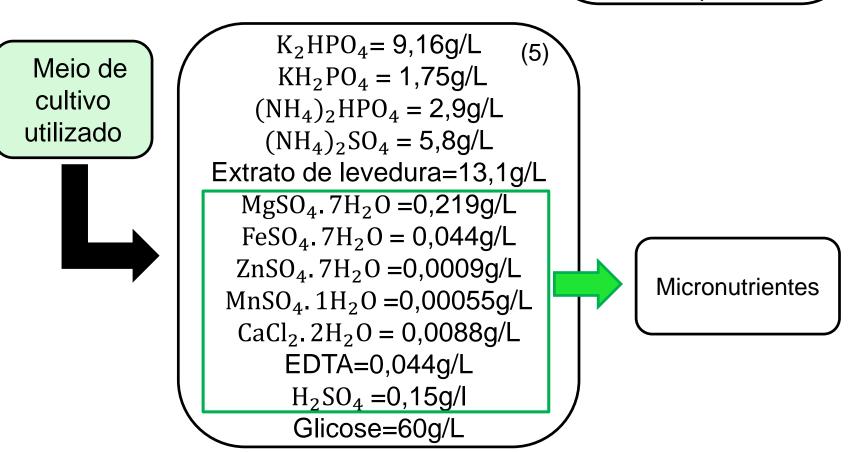
Laboratório de Bioprocessos - Instituto de Biotecnologia Universidade de Caxias do Sul Sigla do Projeto: Levo-BDO

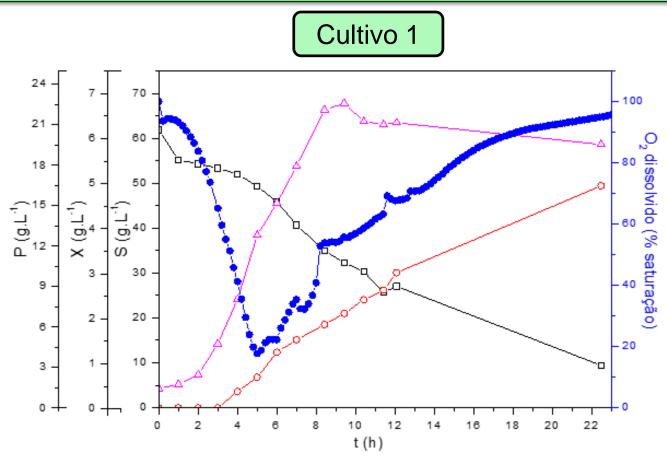
E-mail: gfadami@ucs.br

Introdução (1) 2,3-butanodiol (2,3-BDO)L-(+)-2,3-BDO Intermediário D-(-)-2,3-BDO meso-2,3-BDO levo-rotatório opticamente inativo na obtenção (2S, 3S)(2R,3R) de diversos compostos • Propriedades físicas diferentes Produção fermentativa depende do microrganismo Bactéria (3) Metaboliza (3) Paenibacillus anaeróbia diferentes polymyxa facultativa substratos Síntese de ⁽⁵⁾ Baixo ponto⁽⁴⁾ moléculas Isômero levo de assimétricas em congelamento química fina

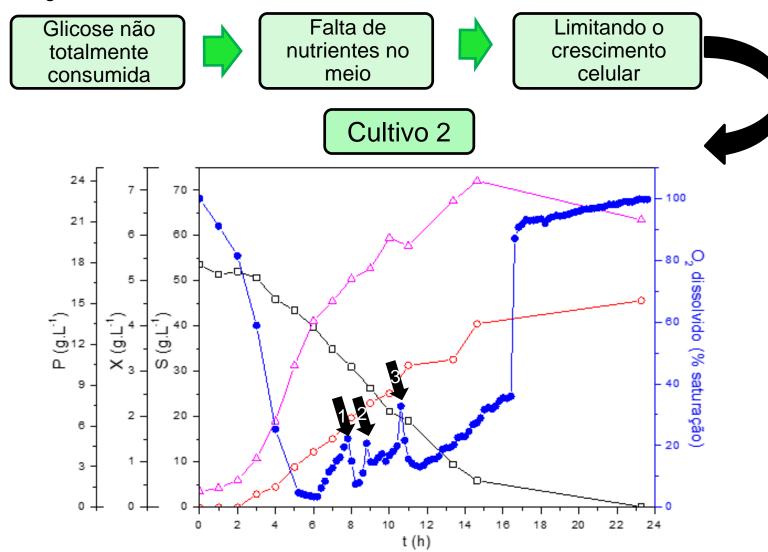
Realizar estudos preliminares sobre o comportamento de Paenibacillus polymyxa ATCC-842 em cultivos em meio contendo glicose como substrato, visando à formação de 2,3-BDO.

Objetivo


Metodologia


Biorreator de bancada 37°C pH 5,5 750 rpm 0,5 vvm 1 DO

Métodos analíticos


A concentração celular foi determinada por turbidimetria e gravimetria e as de glicose e produtos da fermentação por cromatografia em fase líquida de alto desempenho.

Resultados e discussão

Consumo de substrato (□), crescimento celular (△), formação dos produtos (o) e oxigênio dissolvido (•) em função do tempo em cultivo com P. polymyxa conduzidos em reator com 60a.L⁻¹ de alicose

Consumo de substrato (□), crescimento celular (△), formação dos produtos (o) e oxigênio dissolvido (•) em função do tempo em cultivo com P. polymyxa conduzidos em reator com 60 g.L⁻¹ de glicose e adição de extrato de levedura e micronutrientes.

Nutrientes adicionados: 1 e 3 – extrato de levedura | 2 - micronutrientes

1		—
$\overline{}$	93% do dio	
	opticament	e <
_	ativo	
		1

	Ensaio	X (g/L)	Pt (g/L)	ρ (%)	Y _{X/S}	Y _{P/S}
> _	Cultivo 1	6	17	65	0,11	0,32
	Cultivo 2	7	15	57	0,13	0,28

X, concentração de células; Pt, produtos totais formados; ρ, rendimento, rendimento em produtos; Y_{X/S}, fator de conversão de substrato em célula; Y_{P/S}, fator de conversão de substrato em produto.

Conclusão

Conclui-se que P. polymyxa ATCC-842 é capaz de crescer e formar 2,3-BDO, com pureza óptica, a partir de glicose, sendo necessário, no entanto, otimizar-se a composição do meio em função da concentração de substrato utilizada.

Referências

(1) Magee, R. L.; Kosaric, N. (1987). The microbial production of 2,3-butanediol.

(2)Celinska, E.; Grajek, W. (2009) Biotechnological

production of 2,3-butanediol: current state and prospects.

(3) Mariotto, J. R. (2007) Produção de acetoína e 2,3butanodiol por Bacillus polymyxa. (4) Long, S. K.; Patrick, R. (1965). Production of 2,3-

butylene glycol from citrus wastes. (5)De Mas, C.; Jansen, N.; Tsao, G. T. (1987). Production of optically active 2,3-butanediol by Bacillus polymyxa.

Apoio

